Skip to main content

OPTIC ROTATION

PLANE POLARISED LIGHT


This page gives a simple explanation of what plane polarised light is and the way it is affected by optically active compounds.


A simple analogy - "plane polarised string"


Imagine tying a piece of thick string to a hook in a wall, and then shaking the string vigorously. The string will be vibrating in all possible directions - up-and-down, side-to-side, and all the directions in-between - giving it a really complex overall motion.



Now, suppose you passed the string through a vertical slit. The string is a really snug fit in the slit. The only vibrations still happening the other side of the slit will be vertical ones. All the others will have been prevented by the slit.



What emerges from the slit could be described as "plane polarised string", because the vibrations are only in a single (vertical) plane.

Now look at the possibility of putting a second slit on the string. If it is aligned the same way as the first one, the vibrations will still get through.



But if the second slit is at 90° to the first one, the string will stop vibrating entirely to the right of the second slit. The second slit will only let through horizontal vibrations - and there aren't any.




The real thing - plane polarised light


Light is also made up of vibrations - this time, electromagnetic ones. Some materials have the ability to screen out all the vibrations apart from those in one plane and so produce plane polarised light.

The most familiar example of this is the material that Polaroid sunglasses are made of. If you wear one pair of Polaroid sunglasses and hold another pair up in front of them so that the glasses are held vertically rather than horizontally, you'll find that no light gets through - you will just see darkness. This is equivalent to the two slits at right angles in the string analogy. The polaroids are described as being "crossed".

Care!  It is important not to take the analogy too far. The polaroid material doesn't consist of "slits" in any sense of the word. The way it actually polarises the light is quite different (and irrelevant to us here!).

Optically active substances


An optically active substance is one which can rotate the plane of polarisation of plane polarised light. if you shine a beam of polarised monochromatic light (light of only a single frequency - in other words a single colour) through a solution of an optically active substance, when the light emerges, its plane of polarisation is found to have rotated.

The rotation may be either clockwise or anti-clockwise. Assuming the original plane of polarisation was vertical, you might get either of these results.




How can you tell that the plane of polarisation has been rotated?


You use a polarimeter.




The polariser and analyser are both made of polaroid material.

The polarimeter is originally set up with water in the tube. Water isn't optically active - it has no effect on the plane of polarisation. The analyser is rotated until you can't see any light coming through the instrument. The polaroids are then "crossed".



Now you put a solution of an optically active substance into the tube. It rotates the plane of polarisation of the light, and so the analyser won't be at right-angles to it any longer and some light will get through. You would have to rotate the analyser in order to cut the light off again.



You can easily tell whether the plane of polarisation has been rotated clockwise or anti-clockwise, and by how much

Comments

Popular posts from this blog

Why momentum can be conserved and energy cannot in inelastic collisions

We know that momentum is a vector quantity and energy is a scalar quantity. When there is inelastic collision KE is changed in some other form of energy such as heat sound etc. But momentum being a vector does not get converted in other forms By the definition  of momentum we can say rate of change of momentum is force. Thus if no external force is applied on the body ,change in momentum of the system is zero. To give a more clear view on this suppose there are 2 conditions 1st Case There are 2 balls moving in opposite direction with say about 2000m/s speed There masses are m Therefore their sum of momentum is 2000m-2000m=0(as they are moving in opposite direction) While their sum of KE is 1/2m(2000*2000)+1/2m(2000*2000) 2nd Case if the same ball is moving in opposite direction with 200m/s speed the momentum of the system would be same as above is  200m-200m=0 But their KE would be 1/2m(200*200)+1/2m(200*200) Note When there is friction or collision with ...

Adding vectors & scalars

Scalars adding two or more scalars quantities is a simple thing and can be done by simple law of addition . like in this  example. A man walks 3km east and 4km north thus his total distance is 3km + 4km= 7km as distance is a scalar quantity so simple law of addition can be used . Vectors 1. Addition of vectors Two or more vectors may be added together to produce their  ADDITION . If two vectors have the same direction, their resultant has a magnitude equal to the sum of their magnitudes and will also have the same direction. Similarly orientated vectors can be subtracted the same manner. It follows that vectors can also be multiplied by a scalar, so for example if the vector  A  were multiplied by the number  m , the magnitude of the vector,  |A| , would increase to  m|A| , but its direction would not change. In general, since vectors may have any direction, we must use one of three methods for adding ...